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ABSTRACT

A physical optics approximation to the monostatic and bistatic
scattering for axial incidence from rotationally symmetric targets is
developed. Both conducting and lossy dislectric bodies, claracter-
ized by a surface impedance-equal to the intrinsic impedance of the
scattering medium, are treated, The resulting general expressions,
which are valid within the physical optics approximation for any ro-
tationally symmetric target, are specialized to long, thin, shapes,
eithar finite with sharp apices or semi infinite with a sharp apex, by
a modification of the normal physical optics approximation,

Theoretical calculations of the axial back scatter from spheres,
double cones, parabolic ogives, semi-infinite cones, and semi-infinite
cylinders with conical caps for several values of the scatterer surface
impedance are presented. Theoreticecl calzulations of the bistatic E
plane (plane of the incident E field) cross-section of conducting semi-
infinite cones, double cones, and semi-infinits cylinders with conical
caps are alao given, Where possible, the theoretical results are
compared with the exact solution or with representative experimental
data to indicat. the validity of the theory,
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CHAPTER I
INTRODUCTION

The scattering of a plane, monochromatic, electromagnetic
wave incident on perfectly conducting targete as predicted by the
physical optics approximation has been developed previously for
both the monostatic,! and bistaticz situations, Little has been done
however, in the development of simple approximate solutions to the
acaitering from imperfectly conducting targets. Further, the stand-
ard physical optics results fail, in general, to take into account the
shadow region of the scatterer. Application of these results then to
long, thin shapes show considerable deviation from experimental
data,* even for targets of a size generally considered to be within
the physical optics range. The scattering from iong thin shapes has
been of interest recently,?’* both as an approximation to the scat-
tering cross section of missile type targets, and as a study of in-
herently low-reflection shapes possibly applicable to the camouflage
of targets by shaping for minimum radar return.

The present investigation was inspired by the work of Adachi,?
who derived the back-scattering cross-section along the symmetry
axis of finite and semi-infinite bodies of revolution using a varia-
tional technique. The success of this derivation in predicting the

axial backscatter from symmetric and non-symmetric double




cones encouraged the present extension to bistatic scattering cross-
sections and to imperfectly conducting targets. Since, when certain
simplifying assumptions are made, Adachi's solution reduces as a
first:order approximation to the physical optics result where the
physical optics currents are assumed over the entire scatterer

surface rather than just the illuminated portion, it was felt that an

extension of the results to imperfectly conducting scatterers and
bistatic cross-sections could be made using this modified physical
optics approximation and the radiation integral, 6

In this report, general expressions are derived for the mono-

static and bistatic scattering cross-sections for axial incidence on

rotationally symmetric targets with an arbitrary surface impedance. .'f
The physical optics approximation and the radiation integral are used.

These results are then modified for long, thin targets which are either

finite with two sharp apices or semi-infinite with one sharp apex, It -

is shown that this modification removes the polarization dependence

of the expressions for the bistatic cross-sections for the perfectly

conducting target. Experimental evidence indicates that the modified }
-

results are valid in the E-plane for long, thin targets.

P vt

A variational solution for the forward scatter from ccnducting
targets of the long, thin class is derived to supplement the physical

optics results.
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The following theoretical calculations are présgnte"d:

a. Axial backscatter from spheres, double cones, semi-
infinite cones, and semi-infinite cylinders with coﬁicgl ‘aﬁd ogival
caps for ratios .of the surfice impedance of the scatterer to the .
free-space impedance of 0, 0.25, 0.5, and 0. 75;

b. Bistatic E-plane scattering cross-sections of conducting
semi-infinite cones, double cones, and semi-infinite cylinders with
conical caps.

The exact solution for the backscatter from spheres under im-
pedance boundary conditions, and experimental measurements of the
monostatic and bistatic cross sections of symmetric double cones
are also given to indicate the limits of validity of the theory,

The report concludes with a discussion of applications of the
derived equations, some general conclusions concerning the scat-
tering from rotationally symmetric targets, and a summary of the
significant results,

In the Appendix, certain integrals encountered in the calcu-
lation of bistatic cross-sections of double cones are evaluated, and
curves of a tabulated integral, which were used for interpolation,

ars presented,




CHAPTER 1I
DERIVATION. OF THE SCATTERING CROSS-SECTIONS

The cylindrical coordinate system R,$, z to be used.in this

development is shown in Fig. 1. The rotational axis of symmetry of

>2Z

(xy,2')
(rt, 8%, 6"

Fig. 1. Cylindrical coordinate system.
the target is coincident with the z axis, and the target shape is de-
scribed by the radius, a(z), as a function of z. The unit vector ?
is a tangential generating element of the scatterer andZ € = cos 0.
The unit normal to the target surface is A and P is the position
vector (from origin) »f a surface element ds. The target has the
constitutive constants p and €, the complex permeability and per-

mittivity, respectively.
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I}‘;‘om Stratton,® using an 3% time convention, thé: magnetic
'ficidﬁéc;'afttered,at:va Ebint»x',.yf, 2’ exterior:to the closed suiface, S,
( due to apv.ixicident.‘fiei_‘cingi, H1 on S in terms of surface currents
only-is given by
’ kR

i T : N ‘ =& I T Al
e (1) H = o S VXVX[—fg— E x1|ds
- 8

kR

- = e -
1 A_=T

A =T =T
where T is a unit outward normaltoS, E° and H are the total

electric and magnetic fields on S and V operates only on the field

points, Using the vector identities,”

VX ba = VHXT+IVX T,

(2)
VX (axB)=av.b-bV-a+ (b V)a = (a: V)b,

then

R g JER N =T
(3) Vx| =g— (AXH’) | =V x(BxH),

JKR KR -
(4) Vx| (E xR)f= v R X (E x19),
and

kR =T . =T _ kR =T A A 3
(5) v XY X(E xf)= -(E xRV —x—H(E x4 R)-é-i- ¢

kR
. v €
5 R y
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In the far field,

JKR 2 alkT WA
2 & ~ & . o-Jklp *T)y
v R j4 -k T e
{6)
KR

v

kY a9
~ Tk -—-—--er e jkp - 7)

where T is a unit vector in the direction of the point x/, y¢, z’.

From (3), (4), (5) and (6) then,

jkr e A
(7) B (e ﬁ [(E L 3)3(E XA ?)] e BT o

41m|tr

+jkejkr SS‘?;( (ﬁx'!-'!'r)e-jk(ﬁ * 1) d
8

4w r

Let the plane, monochromatic, incident wave propagating in the z
direction be given by,

-1 j(kz-wt
E1=Qe']( w),

(8)
oY tke-et)

o

z, is the intrinsic impedance of free space, and k is the free space
wavenumber. The plane of incidence is defined by A and the z axis.
At each point on the surface of the target the incident field is sepa-
rated into components in and normal to the plane of incidence. If
subscripts 1 and 2 denote components in and normal to the incident

plane respectively, then with the factor eIt understood,




-1 A -j
E,=acoséde Tk

(9
Ton 8®  jke

= e B
1 Zq

i i

E; =-§ sin ¢ e‘]kz
(10)

. N .
-I-'I;= a sin ¢ esz
Zo

where

a =?¢cos¢+?sin¢
(1) n” oA R

P =-xsind+ycosd .,

On the surface S, the scattered fields are given approximately by
—8 =i =i

E=RE+RE,

(12)

8 -l =1
H =R, H-R &,

where R and R, are the plane sheet reflection coefficients for
polarizations in and normal to the plane of incidence, respectively.
Equation {12) is the physical optics approximation on the illuminated
portion of the scatterer or the modified physical optics approxi-
mation over the entire scatterer, as will be seen later. Thus, on

the surface, S, the total fields are given by,




=T =i -3 :
E, = E +E, = a[14R, Jcosd e/

=T i _58 i
E, = Ei+E; = -BI1+R, Jsine J% -

(13) )
=T =i -8 A cosd jkz
H, =H +H -p[lunn]—-—zo e
e ST B 1 8iné jka
H, =H;, +H; =a[1=RJ_] — e
o] .

Using the coordinate description shown in Fig. 1,

=T .
(14) % E = [R 8ind -?cos¢]sin9cos¢[l+Rn ]ejkz ’

- T
(15) AXE; =-[Xsinb cos$+§ 8in6 sind+Z cos 9]5in¢[l+R_L] ’

. oJkZ ,
~T
(16) /r?x('r?le-l1 )= (X 8in¢-F cos 6} [l-R"]EQ?- ejkz R
)

(17) 'Rx(ﬁ'xﬁzT) = -{Qsin0c08¢+?sineain¢+

2 cos 6} ginfsin¢ [1=R ]ejkz ,
Zg L

The assumption is now made that the Leontovich® conditions for the
application of the impedance boundary condition are satisfied. That
is, the depth of penetration into the body and the wavelength in it

a'e small in comparison to the free space wavelength, in comparison

to the distances from the sources of the field, and in comparisen to

9 ety




the radii of curvature of the surface of the body. Hence the product
p€ is complex and the imaginary part oflep. is a large quantity.

Under these conditions the boundary condition on the surface s is

(18) ﬁxET=zJ$x(ﬁxﬁTD,

where zg = ||J. /¢ is the intrinsic impedance of the scatterer.

AxFET|

(19) zg =
*T lax ax®T]

The absolute valuw in Eq. (19) is taken to mean the modulus of the

vector, retaining the phasor nature of z5. In other words, zg = | ple

may be complex.
From Egs. (14), (15), (16), (17) and (19) then,

2
1-=2 sin®

z
(20) Rll = . ’
1+ 22 gine
Zg
and
z
1-= sin0
21) R =- %o
( 1~ zZg ’
1+ -z—c; sin ©
which are the approximate Fresnel reflection coefficients.® Then,
=T
(22) E X7 = {X gin ¢ cos ¢ sin o[R - R, ]+

T sinof[1+ R, sin® ¢ + R, cos’ ] +

2 cos 8sin ¢[1 + RJ_]} eJkz |




o - - Zcustcosd[l - R,]¥

A _T
(23) TXH = {Ksin0[1 - R sin ¢ - Ry cos® $] +

¥ sin ¢ cos ¢ sin O[R_L- R”] +

ejkz. . . o

Zo
If the far field is to be calculated in the H-plane or yz plane of

Fig. 1, for y20

(24) P =p(% sin 0’cos b +—’)>‘sin 8%sin ¢

+ '}) cos 0%},
Thus, since p cos o= 2 and p sin 0= a(z),
(25) b'v?za(z)sin¢sinﬁ-zcos[3,
and in the H-plane far-field calculations

(26) T x (Bx FIT) = {R(sinpP cos O cos d [I-R" ]
-cosP sin® siné cos ¢[RJ_-R“ ) -Fcosp sin 0 -

(coszd)[l-R" J+sirf ¢[1-R_L])- 2 sinp sin 9 -

2 2 ejkz
(cos ¢[1-R" J+sin ¢[1-R_L])} Za .

In the r”, 0% ¢” spherical coordinate system of Fig. 1 where

a

g =w - 6”in the H-plane,

(27) ﬁgéa ='9\”(-cos ¢ H; - 8in f st) 2

10




Equation (27) is valid in the far field and the "front'" half of the H-
plane (y 2. 0).

From Eqs.{7),-(22), (25), (26)-and (27}, the-scattered-magnetic -~
field in the H-plane is-obtained in:the far field:and for.y > 0 as

8 TeadKT
8 voe dke
(28) He? inrz,

” ~cos B \'\ s_i,g;éylrcos‘z'q:(l-l-ﬁ i~cosB(l-R, )} -+
fons [ cotoust-cnsii,
aid B4R, ~cos B (I-RJ_))] e—jk[o:.(z)sintb sinp ~z({cos ﬁ+1)]d.
T R 2
+sinpSS [-cos Gsin¢(1+Rl)+sinﬂ»sinQCos (1 - R") +
s
sinz‘b(l-‘R'L))] e‘jk[a(Z)ainq; sinp -z(cosf+1)] d'} ,

In the E-plane or xz plane of Fig. 1,

’?:Qsinﬁ-’z\cosﬁ, x>0
(29)

T=p (% sinelcos¢+'y\sin6/sin¢ + 2 cos 9’} ,
and
(30) P T=0a(z)cosdsinP ~zcosp,

Using Eqgs. (23) and (29),

{31) ?X@D(ﬁT)={§ cosf sin8sin¢ cos¢{Rl- R.”] -
Y[cosp sinS(cosz ¢[1-R;, ]+sin2¢[l-Rl])

+sinfP cosBcos¢ [I—R"]] + 2 sinpP sinOsin ¢ cos ¢ -

oJk2

[RJ.‘ Ru]]’ Z

o

11




|

Again in the r’, 9”, ¢” spherical coordinate system in the E-plane,’

3
——— P s

. -8 8
(B32) - HZ,,E #7 (-sin ¢ HS + cos ¢ H.;) =3/H,, forx20.

——

From- Egs-. (7), (22)'; (30), {31) and (32), the scattered magnetic field

in fﬁe E-~plane far field is obtained for x 2 0 as, ‘

jkelkT
4w rz,

”\Y cos® $ 8inB[1+R-cos B(1-R ) ] -

. s
(33) Hu=
. ¢ L ]

e-ik[a(z)cos ¢ sinp - z(cosp + 1)] ds - g

ggsinz ¢ sin6[cosp (I'R‘.L)"(HR.L)]
3

. o~Jkla(z)cos b sinp -z(cos ptl)] 4,

-sinp S'S‘cose cos ¢ l-R."]
-jk{a(z)cosd sinp - z(cosP + 1)] } -
‘e ds|.

Equations (28) and (33) give the entire scatiered magnetic field in -

two orthogonal planes, since, by symmetry, the other components

I z
vanish. Since ds = a(z) (a'(z)) + 1 dz dé and the limite of inte- ..E
gration on ¢ and z are 0 to 27 and 0 to ¢/ respectively, where ‘E

2 = ¢/ denotes the geometrical shadow boundary of the scatterer, the
integrations on ¢ in Eqs. (28) and (33) may be performed without -
specifying a(z). From Eg. {48), there are the following forms of

integrals on ¢,

i ]
‘m Py

12 b

g

b

»
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,2" . »
S cos® ¢ o-JKA sin¢ a9,
o

! S - ‘2" . .
‘ (34) 8 sin? p e JKABING 44
Yo

2T ) .
S sind e-JkA sind b
o

Using the exp:fms‘ion,.m
00
(35) e-JkAsing . } InlkA)e I
n=-

and assuming that the summations ,re uniformly convergent with
respect to ¢ so that the order of integration and summation may be

interchanged, there are obtained,

2 . )
(36) S sing e KA 810 44 o san 5 (kA) ,
o]
2% . .
(37) S cos’ ¢e'JkAsm¢d¢=ff JolkA) + %Jz (kA) +12L J-o2 (kA)
(o]
_ _J:x (kA) -
=ATNAT
2w kA si
(38) S sin’ g AN Pgy - 73 (kA) -3 32 (KA)-F T-2 (kA) =
[o]

= 2w J](kA) ,

13




and for the integrals on ¢ in Eq. (33);.

2n . » R
39) { cosq emEA g s, ety
’ i o ] .
4 - .
40y - y cos? § e JKACOBS g L 1 1Ay 12',32 (kA)-;;_'J-z (kA),
(]
= 2w J/ (kA)
2n . )
(41) S sintp e IKACOB 4y o TolkAV 23, (KAV 332 (kA)
[+}

- 2rdy ]kA]

'kA .

The scattering cross-section is defined" as,

8|3
H
(42) o= lim 4n2* [FT|
r o

From Eqs. (28) and (42),, using Eqs. (36), (37), and (33) and the
definitions of R“ and R’J, from Eqs. (20) and (21), the bistatic scat~

tering cross section in the H-plane is found as,

4 l(q'(z))zﬂ . 20a’(z)cosg]-
(43) O-H-plane“a) = 4r.‘kz -cosf S‘oa(z)a'(z 25

;,'(q'<z>f+x+-:f- o’(z)

J, [k (2)sinp] okz(coep +1) o
ka(z) sin p

14

3

oot

et

i

I3

cmorent

TRy




zs a’(z) cosﬁl(a’(z))z-i-l
-cospP g o (z)(z) — [ka(z)smp]

,(a( ))+1+ a(Z)

. ejkz(g:os g +1)dz

{ 24 0(z) o’(z) jkz(cosp+l)
. A
+j8inp S; (zor(l(?"(z))z"'l + o) J, [ka(z)sinp It z

/
S‘ a(z)(olz) z, J;[ka(z)sing ] oJkzlconpHl) 4
] e

zJ(a’(z))’ +1+ 2501 2)) ket (z) sin B

ol a(zdz)zg ofa) +1
+sin § g

jkz(cos p+1), 2
), 29 (0(2) 41 +2,04z)

J! [k (z)sinp)e

And from Eqs. (33) and k42) using Eqs. (27), (39), (40) and (41), the

bistatic scattering cross-section in the E-plane is,

/
U!a(z)a'(z) zel(e/a)) 1 -2 a)con "] .
zJ (a'(z))z-#l + zoa’(z)

3! [ka(z)sinp |efkzlcos B+1) 4,

S\‘, [cos B zol(a’(z); +1- z.a'(z)} J1 [ka(z)inp]

(49 05 1ndP)= 4K

o

-\ a(z)d]z)
2oll0A2)) +1 + 2(2) ko (z)sinp

()
. eJkz(cos B + l)clz

200 (2)0( z) 31 [ ke (z)sin Jekz(conp 1)y, l’

{
H ““"S, (2ol +1 +24012))

15




where the relationé’z

I (0) = 32 (B) = 23 (b,
(45)
Jolp) + Jz2 (p) =

s . - L

201(p)
-

have been used to simplify the expressions. Setting the bistatic angle
to zero in either (43) or (44) gives the monostatic axial echo area

under impedance boundary conditions as

v w— . -
(46)  o(0) = mk? Sa(z)a'(z) Z,J(Q'(z)lii- 2,0{z) oJ2K2 4y
° 2 (o2 14 200(2)

f:!’ / . 2
[ aaela| 2! ((2)) +1-2,0(2) e dz‘ .
(o]

2oJ (012))7 +1 4 2402}

If the target is perfectly conducting, z4 = 0, from Eq. (46) the axial

echo area is found as,

4 . 2
g a(z)o(z) eI¥K2qz

(47) oy 0) = 4mK

o

which is identical with Adachi's? first order approximation, except . T

for the integration limit, B
From Eq. (43) with z; = 0 the bistatic cross-section in the H-

plane for a perfectly conducting target is obtained as,

16
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__ Similarly, from Eq. (4} the bistatic cr

£
(48)  op(B) =4n1<“§ a(z)a(z)d o[kt (z)sind e

i [y

« O

jkalcosp + 1), ‘

H-plane

oss-section in the E-plane for

a perfectly conducting target is,

; t :
(49)  0p(B) = 4mijsinp Sa(z)J,[ka(z)sina ] efkzlcosPlly, '
(o]

E-plane

afz)a(z)I [k (z)sinp Je

] , ‘2
-cos S chz(cosﬂ-l-l)dz
°

Now if the Adachi conditions' are applied to the target, requirinug that
the scatterer be long, thin, and have a sharp apex if semi-infinite or
apices if finite, and that the slope of th2 scatterer a)ong the z axis be

reasonably small everywhere, then

. ~n /
sin9™tan 0 = d{z)<< 1,

(50)
cos8=1,

In this case the physical optics currents are assumed to exi * over

the entire length of the scatterer (i.e., t’-l), and from Eq. {(43),

17
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(51, o) =4m

-cos P ‘) a(z)a(z)
o ka{z)sinp

o | Loo7) 22cosp] 3, [Ka(zlsing ]
H-plane

1+ Zo Ot/(z)
Zg

, ejkz(coaﬁﬂ)dz

~cos fB ya(z)a(z;[ Zo

L+ 22 afz

sot(z) cosp

]J,[ka(z)sinp e

...ﬂ.ct(z)a(z)
+j smﬁy J, [ka(z)sinp ]ejkz(cm [3+l)dz

elkz(coe 1)y,

, z
roino S,l Q(Z)Q'(z))z'z_:' Ji[ka(z)sinp ]
sin

o 1+ 22 a(z) ka(z)sinp
Zg

) 2
ﬁS’ az(:)s (’) J [ka(z)sinp]eJRZ(cosp+1)dz

For the perfectly conducting long, thin body, zg = 0,

. |
S G(z)a’(z)Jo[ko,(z)sinp ]esz(cos ﬂ‘l‘l)dz
(o]

(52) oy (B) =4mk’

H-plane

In the E-plane from Eq. (4),

18

] jkz(cos p+l )dz
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| an/(z)cos [.3]
s . 3/ (ke (z)sinp ]

Z
1+ = afz)
Zg

t
(53) of{B) = 4ﬂkz’5a(z)a/(z) :
E-plane o

: . 1
. e.]kz(cosﬂ + )‘dz

-Sa(z)a'(z) ko (z)sin

(o) ]

14—
zO

a(z)

t [COB ﬁ-—‘a(z)} Jx[ko'(z)sinﬁ] oJkz(cosp+1)

P — a(z)a’(z)

+j sinp g J,[ka(z)sinp ]e’ikz(cosﬂ+l)dz F .

14 22 o{z)
Zg

For the perfectly conducting target,

]ejkz(cos p+1)dz

. [}
(54) o-}fd(p) = 41rkz jsinp S‘ Ot(z)Jl[ka(z)sinﬁ
(<]

E-plane

!
~cos P S a(z)az) I [ka(z)sinp Je

o

jkz(cos p+1)dz

From Eq. (49) the axial back scatter from a long thin target is,

(55)  ol0) = 4nk’ [__, ) _Z_gJ’ S‘ alz)al(z))’ &%
Zo % (1+—9~al(z))(l+ Ct(z))

For a perfect conductor, from Eq. (55)

{
S a(z)a(z)e

o

sz 2

(56)  0}(0) = dmk’
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The expression in Eq. {56) is the same as Adachi's?® first ordér ap- -
proximation.

The standard physical optics results for the H-plane, E-nlane
and monostatic cross-sections respectively are given by Eqs. (43),
(44), and (46) for an arbitrary surface impedance, and by Eqs. (48),
{49); and (47) for the perfectly conducting scatterer. The corre-
sponding results for the long, thin targets, wl:10re it is assumed that
the physical optics currents on the illuminated surface exist over the
_entire scatterer (li -+ 1), that the target has a sharp apex or apices,
and that the slépe along the z axis iv reasonably small(mz)ﬂﬁl) ’
are given by Eqs. (51), (53) and (55) for an arbitrary surface im-
pedance, and by Eqa. (52), (54), and (56) for the perfect conductor.
These equations comprise the results necessavy to apply the physical
optics approximation to any general rotationally symmetric target
with an arbitrary surface impedance and a modification of the physical
optics approximation to a particular class of long, thin targets with
an arbitrary surface impedance.

In the case of long, thin targets, where a modification of the
physical optics approximation is used, three difficulties exist which
must be eliminated, or at least rationalized, before proceeding to
an application of the results. Inthe remainder of this section, it

will be demonstrated that; (1) the assumption of the physical optics
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currents on the shadow region of the scatterer removes the polari-
zation dependence of the bistatic results for rotationally symmetric
conducting targets., This will be proved in particular for Eqs. (52)
and (54) (the E- and H-plane results for long, thin ta.:zgets) s and a
general proof will also be given. (2) The accuracy of the forward
scatter cross-section predicted by the long, thin target results is
questionable, at least for realistic targets, and an alternative vari-
ational result is derived. (3) The Leontovich conditions® for the
application of the impedance boundary condition cannot be aatisfied
at the apices of long, thin targets, and the contribution from these
portions of the scatterer are in doubt. Further, it is apparent’
from the derived results in Eqs. (51), (53), and {55), the long, thin
target cross-sections:foran arbitrary surface impedance, that for
firite scatterers particular combinations of impedance ratio (zg4/z),
and target slope (a'(z)) in the shadow region, will result in an en-
hancement of the cross-section over the corresponding result for the
perfectly conducting target. This is demonstrated in Chapter 1II for
the case of axjal backscatter from symmetric double cones. No
experimental evidence is available at present to either support or
disprove this result, although backscatter enhancement has been
demonstrated for a conducting circillar ogive with an asymmetric

absorber ccating on the rear apex. 26
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The lack of polarization dependencé in Eqs. (52) and (54) may

be demonstrated as follows. In Eq. (52), using the relation®
(51 == [p3(p)] = pIolp);
dp °

the integral may be written as

2 .
' 1
(58) I =§-ls-1;'r3 So adz{a(z)J![Ba(z)]}esz("“p"‘ Vdz.

An integration by parts gives,

. (cos Btl) ¢

= . . jkz(cos [5+1)dz ‘
1 sinp

(59) I o(z)J,[ka(z)sinp Je

o

It may be seen by comparing Eqs. (52) and (54), that

(60) oy (B)= op(B) .
E-plane H-plane

This may be shown in general for rotationally symmetric targets as

]

follows;™ for a perfectly conducting target, the physical optics ap-

proximation gives tne scattered E and H field (tangential components)

as E% = -Ei, Hs = H‘, over the illuminated portion of the scatterer,

and as E® = -E!, H® = -H® over the shadow portion. The extended

%#The author is indeb%ed to Dr. E.M. Kennaugh for this proof.
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long, thin body -approxirmation however gives (tangential components)
ES = -E', H® = H! over the entire scatterer. Thus Eq. (1) becomes,
for long, thin, shapes,

e o2 KR i)
" = %ggw[e = ’ﬁxH’]ds.
8 M

Now Eq. (1) holds when the scattered fields or the scattered fields
plus any fields Wwhose sources are external to s are integrated.
Using duality, and recalling that the physical optics scattered.fields
on the illuminated portion are assumed over the entire surface s, the

incident field may be subtracted and there is obtained from Eq. (1),

_ jkR i
(62) Es=-..?:_SSV>< o AXE |ds.
4 JJ); | R

Thus, if the H-plane scattering is calculated using Eq. (61) and the

polarization of the incident fields is then changed by w/2, keeping the
same direction of propagation, the E-plane scattering may be calcu-
lated using Eq. (62). Since E! and H! are related by] w/€ in the far
field, the results from Eqs.(61) and (62) are seen to be identical.
The general result may be stated then that if the scattered fields

(E® and Hs) are assumed to be the negative and positive respectively
of the incident fields (Ei and Hi) over the entire scatterer surface,
then the results using Eq. (1) in any two orthogonal planes are iden-

tical. Clearly, there is no way of deducing in general whether the
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bistatic results are more valid in one plane thaii anéther or i)oésibly
are an average of the two orthogonal planes, and this question must
be resolved by a comparison of the theoryiM:ith‘,expg,giﬁéiﬁéi*'résu,lts i

In the case of a sphere, Keller's geometrical theory of diffraction 25

predicts that a diffracted ray travelin'giar_oit;.n;l the' gphere~;h32£hénce
to a receiver would be obtained in the E-plane_but ©i6t in the Ha-_ﬂanc{ :
It might be reasoned from this result that the preti-;ct’ecijsca;ttéring‘
will correspond to the E-plane, but this type of deduction:is not
completely conclusive by any means. InChapter IV it is shown that
theoretical calculations using the long, thin target approximation do
agree with E-plane experimental results.

A second obvious difficulty with the résults of-the modified in-
tegral formulation for long, thin targets is-the cross-section predicted
for forward scatter. If f = v in Eg. (51) or (53) then,

)
S a(z) d(z) dz

o

(63) ofr) = 4nk :

For finite scatterers where a(0)= a(l) = 0, an integration by parts

yields

(64) o(m) = 0,

which is obviously in error, at least for realistic targets. The for-

ward scattering cross-section for axial incidence from rotationally
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‘syx‘rir\;wé;;'ié, cofxductiixg, long, -thin ;ta;‘g"‘etgi»yw;{i_tii‘~é,.pices‘rrﬁay also be
déerived using a variational-technique. From the ‘z,f_eéixlts of-Storer
a,t;d.Sevig‘:kg'” ‘the variational expression for the iiiqta.ti:i;,_sgva:.tge‘ii_hfg’

) ¢rogs=section is: found‘to*be,

SS ap(r) .y (r)chSE ,(1/) p(ﬂd
SS‘ a,p J’ /(r)d.

where G and § are unit vectors in the polarization "a;n'd' propagation

(65) "M(B)- 41r

-1 .
directions, respectively. Thus E; ,0 {r)-is an incident field polarized
in the @ direction and propagating in the ? direction, ~E& 0 (r) is the
’
) i
scattered field on the scatterer surface due to B ,p (r) and Ja’p(r)
J <, p,(;-") are the surface curreénts in’duced on the scatterer by

—i i
Ea’,po(r) and Etz (1), respectively. Let

N Y4 A
o= =x
(66) P=2
IBI= '? k]
then the physical cptics currents are, -
6 Jo,0f8) = ['€cos¢ -? sineaimb]ejkz
(67) '
Ja';ﬂ’(r) = [-‘gcostb +% sin 0sin pJe~ikz | _
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‘U‘Siﬁg»;thé surface scattered fields found by Adachi,?

By = 220 (i) + j2icl(a))} con €

6 g = %o/ . sind  _jkz
(68) ‘E¢ o .{a(z)+3ka(z)} _a(z) e
Eg = - %9 sin ¢ eJkz

» -
(Eci> i5°the scattered'electric field due to the equivalent magnetic cur-

rent, kz = -2, sin ¢ esz.) Equation (64) gives

t
[ga(z)a’(z)l‘a’(z)% 1 dz]z

(o]
(69) o(w)-= lémk?*

(‘” l *
{d"(z)+j2k(2)} o (2) Jolz)® +1dz+ \ fz)dz
5 | §

For.OL'(z)z << 1, and-0.(0) = a(4)= 0, an integration by parts again

yields

¢
§ /() o/(z)dz

(o]

2
(70)  o(r) = 4nk’

1]
‘Q

When the approximation Ia’(z)z + 121 is assumed the deduction must
be made that for very large bistatic angles the assumption of the
physical optics currents on the shadow portion of the scatterer:leads
to scattering cross-sections which would only be valid if the scatterer

approached a needle-like shape. If the currents are removed from
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the shadow region, that is, if 1! denotes the shadow boundary then

+ =0 >t1
Ja,p(r) z 2z
(71)

Ja’,,-p(r)=0 Zl:ll ]

and there is obtained from Eq. (65),

i ! '
S a(z)a'(z)la'(z)z-i-ldz S;ia(z)a'(z) o(z)*+1 dz :
¢ ]
# , / h 22
S;i{a(z)+32ka(z)}la(z)l,a(z) +1dz,+S;ia‘(z)dz S

Now for a’( z) << 1, an integration by parts yields,

(72)  o(m) = lénk*

0
(73)  ofm) 2 4mk’ Sa(z)al(z)dz 2

If a(t}) = a, then

(74) I xay?
ﬂ'az

In general, the forward scattered cross-section should be cal-
culated from Eq. (72) (the variational expression using the standard
ysical optics currents and Adachi's expressions Eq. (6é) for the
scattered fields on the target surface) since this expression reduces,
as a first order approximation, to the well accepted value (ka) ? for

the normalized cross-section. The zerc forward scatter predicted,
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as a first order apprd:{ifn'atigﬁ;‘vw}hen the physical optics currents are
assumed over the entire sca er may: not bé incorrect.in the sense
that as the slope beco.nes very small (a’(z’)‘ ~0}, the target-becomes
a needle which may riot cast a s}iéjdqw (arid hence have zero total scat-
ter), but for prac.:tical‘-ta,g»g“émt_‘s" a non-zero résult is. more reasonable.

It should be noted that Eq. (74), the first order approximation
of the variational solution, Eq. (72),. is just the forward scattered
cross-section predicted by the standard physical optics results in
Egs. {43) and (44). An examination of the standard Physical optics
results reveals further that the normalized forward scatter cross-
section predicted is a constant (k(:t(li))2 » independent of the surface
impedance. This same result has been demonstrated for the exact
solution of the scattering from spheres under the impedance boundary
condition,!® where it is shown that for large ka (sphere circumference
in wavelengths), a plot of the normalized forward scatter cross-
section vs ka approaches the value (ka.)z » independent of the surface
impedance of the sphexe.

Marcinkowski!® has also shown in the case of diffraction by
an absorbing half-plane that the forward scattered fields are relatively
unaffected by the surface impedance.

One additional factor concexning the validity of this integral

formulation for imperfectly conducting long, thin scatterers should
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be considered. Clearly, targets with a sharp.apex or apices can
never satisfy the Leontovich conditions for applyihg approximate
boundary conditions at these points. Hence, the axial echo area as
calculated from Eq. (55) should contain a different tip contribution.
However, for a(z) << 1, Eq. (55) should suffice except for very low
reflection shapes.

In summary, the results derived in this section should be
utilized as follows; .

a. The monostatic, E-plane, and H-plane cross-sections of
general shapes are calculated from Eq. (46), (44), and (43), respec-
tively.

b. For targets in the "long, thin'' classification, the mono-
static cross-sections are calculated from Eq. (55) and the E-plane
cross-sections from Eq. (53) for bistatic angles less than the
specular reflection angle. The forward scatter cross-section is

given by Eq. (72).
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CHAPTER 1III _
AXIAL BACKSCATTER -

A, Semi-Infinite Cones

‘A semi-infinite cone characterized by a surface impedance

zg = Ip./e is shown in Fig. 2. From the figure, Qa(z) = z tan 0,.

AX
3

= e
2)
» 7

y

Fig. 2. Semi-infinite cone.

Using Eq. (46) and performing the integrations yields,

2 2 2
75 o.(o) tan‘ eQ sec eo{zs - zo} .
(73) xZ  lém zszo(1+2ta.nz 9°)+(zz +zi)sec 8,tan 6, . i
If 8, is small such that the ''long, thin" approximation applies, then )
from Eq. (55), .y -
Zs _ Zo ’
(76) olo) _ tan®0y 2 Zg
== =
A 161 1+tan? O5+tan 6, {-z-i + 3‘-’} .
Zy 2g
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Setting z¢ = 0 in either Eq. (75) or Eq. (76) yields the physical optics

approximation to a perfectly conducting semi-infinite cone as,

(77) UM\(Q)‘ N ta}ﬁ:‘Q{,
< -1‘617~
) Thé; axial echo-area, as calculated from Eq. (76) for semi-
infinite-cones- with half angles of 10, 20, 30, a;xd 45 degxees as a
function of tl;e impedance ratio, z4/2z,, is shown in'Fig. 3. Note
that a reciprocal impedance ratio scale is also given extending:the

range of this parameter from 1 to « ., If should be noted that in

Eqs. (46) and (55),

a‘(O)‘zs y =-¢r(0)‘z. R

The axial echo area from a semi-infinite cone is the tip contribution
discussed in Chapter II for a target with a sharp apex. Since, as
was pointed out in Chapter II, the conditions for application of the
impedance boundary condition are not satisfied at the tip, the re-
duction shown in Fig. 3 is an idealized case.
B. Double Cones

A double cone with the half angles 6, and 8, is shown in Fig. 4.

ztaneo 0<z<b,

(78) alz) =
-(z-c)}tan ©, bgz<ec.
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Fig. 3. Axial backscatter from semi-infinite cones
as a function of the surface impedance.
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From Eq. (55), the normalizéd.axial echo area-of a non-symmetric

double cone is given by, .
, 2 C{e?XP1-j2Kb] -1} - 2
(19 240 _ gen o ' :
2 2 ‘ Zo 5 ; 3 i

tan o

-where, ‘
24 z
1 - =2 tan 6, 1 - =2 tan 6,
zZg 2o ‘
C st e o
z zg
1+-2tan 6 1+ -5 tano
zg ° %o °
Zo Zg )
1 + —tan 6, 14+ —Ztan 9,
D= %g - Zo
z
1-2%0 tan & 1-_8tan 6,
zg z,
X

Fig. 4. Double cone.
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The normalized axia. echo areas from a 8, = 10° half angle
double cone with tan 6, /tan 0, = 1,71234, as a function of kb for
z2g/2q ratios of 0, .25, .5, and .75 are shown in Fig. 5.

Setting 6, = 6 and ¢ = Zb'in Eq. (79) yields the normalized

axial echo area of a symmetric double cone as,

j2kbpy . 1Yy . 2
(80) clo) tan‘e | CleTT1-j2kb]-1)
ma’  16(kb)* | D¥JPKP[j2Kkb+1]-eitkb)

Zo Zg
14~ tan © 1+ = tan ©
o = Zg ° Zo °
z z
1-—2tan 8, 1 - -8 tan 0 .
Zg %o

The normalized axial echo areas of 10°, 20°, and 30° haif angle
double cones as functions of the electrical length kb for zalzo ratios
of 0, .25, .5, and .75 are given in Figs. 6, 7, 8, 9, 10, and 11. In
Figs. 6, 7, and 8, the cone half angle is the parameter, and in
Figs. 9, 10, and 11 the ratio z4/24 is the parameter.

From Egq. (80), the high and low frequency limits are given by,

) 29
(81) 0'(:)) - ta: o [C+D]2
a kb o
2
/ 2 3 3
o) - tan” 05 C[Z(kb)z 4§ ‘?i‘-@-]-oﬁ[zmb)’ + M]
nal kb ~0 I1b6(kb) 3 M

The measured’ > and theoretical axial backscatter from con-
ducting double cones as calculated from Eq. (56) are compared in

Fig. 12. 34
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¥ig. 5. Normalized axial backscatter irom a nonsymmetric
double cone. €,=10 degrees, tan§ /tan6, = 1,171234,
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Fig. 6% Normalized axial backscatter from symmetric double:

cones for a surface to free space impedance ratio
of .25,
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Fig. 7. Normalized axial backscatter trom symmetric double

cones for a surface to free space impedance ratio
of .5.
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Fig. 8. Normalized axial backscatter from symmetric double -
cones for a surface to free space impedance ratio
of .75. .
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Fig. 9. Normalized axial backscatter from a 10 degree
half angle symmetric double cone.
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Fig. 10. Normalized axial backscatter from a 20 degree

half angle symme‘ric double cone.
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Fig. 11. Normalized axial backscatter from a 30 degree
half angle symmetric double cone.
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Theoretical

0, H.P, V.P.

10 2,0 2.7 -2.36
20 -1.8 -0.5 +1.42
30 +0.5 +1.0- +0.68
10 - -4.0 -4,0 -4,07
20 0.0 -1.0 -1.10
30 -1.5 -0.3 +1.42
10 «9.0 -8.5 -7.60
20 5.0 -4,5" 4,07
30 -2.,5 «2,7. -2.36

H.P.
V.P.

Fig. 12,

Horizontal Polarization
Vertical Polarization

Measured and calculated axial backscatter
from symmetric and nonsymmetric double
cones.
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. Semi-imivate Gyhmders with Conical GCaps

Setting Uy 0 in Eq. (79) gives the normalized axial echo arca

of, the sem-infinite cylinder capped with a cone of half angle 0,

shown in Fig. 13 as

’ 2

0 ] 2

g2y 0L tAn To x| J2Kbry sy 1 [P
Ta“ 16(kb)? !

‘X

w—aipe 00

t——— b———a)

Fig. 13. Semi-infinite cylinder capped by a cone.

The normalized axial echo area of a semi-infinite cylinder of
radius a capped with cones of half angles 10°, 20°, and 30° as a
function of kb is shown in Figs. 14, 15, 16, 17, 18, and 19. In
” Figs. 14, 15, and 16, the half cone angle is the paramater, and in

Figs. 17, 18, and 19, the impedance ratio zs/zo is the parameater.

The high and low frequency limits are given by

a10) . G tan’ 8y
ra? kb = 4
(83)
olo) tan’ 05 C* (kb)’
wa? kb0 4
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It is interesting to note that the result in Eq. (82) is genera’ y
attributed to the physical optics approximation for a finite, flat based
cone. That is, Eq. (46) would give the same result as Eq. (82) for
any target whose illuminated surface was a cone. Clearly in the
limit as kv =, where v is the illuminated length in the direction of
the incident field, the axial echo area of rotationally symmetric targets
becomes independent of the target shape in the shadow region. Hence,
if kv does not +x the results as given by Eq. (45), should be con-
sidered to be those for semi-infinite cylinders capped by various

shapes.
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Fig. 14. Normalized axial backscatter from a semi-infinite
cylinder of radius a capped by a cone for a surface

to free space impedance ratio of .25,
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Fig. 15. Normalized axial backscatter from a semi-infinite

cylinder of radius a capped by a cone for a surface
to free space impedance ratio of .5.
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cviinder of radius a capped by a cone for a surface
-0 free space impedance ratio of .75,
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Tig. 17. Normalized axial backscatter from a semi-infinite
cylinder of radius a capped by a 10 degree half
angle cone.
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Fig. 18. Normalized axial backscatter from a semi-infinite
cylinder of radius a capped by 2 20 degree half
angle cone.
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Fig. 19, Normalized axial backscatter from a semi-infinite
cylinder of radius a capped by a 30 degree half

angle cone.
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D. Parabolic Ogive

A parabolic ogive is shown in Fig. 20.
2
(84) oafz)=a -.EE. (z-b) .

From Eq. (55), for 1/tan®g > 2 /2, > tan 0, the axial echo area is

given by,

(85) f-%%)— . tz:‘rﬁ“x sin(2kb)cos(2kb)- Y sin? (2kb)+ Z cos® (2kb) +
Qfcos a(Ci{a)-Ci{a)}+sina(si(a)-si(a)} +
R{cos B (Ci(B )-Ci(B ))+sinp (si(B)-si(B )}}z +
{(Y+ 2) sin(2kb)cos(2kb)+(X-T)sin’ (2kb)-T cos? (Zkb) +
Q{sina(Ci(a)-Ci(d))}-cos a(si(a) - si(a)} +

R{sin&(cw)-cuﬂ’n-cosp(sim)-si(a’»}}’] ’
where

@ = 2k(A+b), o = 2k(A-b)

B = 2k(B+b), P = 2k(B-b)

2 2
Zo b zg b ‘cost sint
A T — T B S o i - i = - ——
2. Za ’ 2o 2a s Ci(x) S s dt, si(x) S n dt

: e CNc) N S CRE)
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2

1 Zo 2 T kb_ (f_q)z ) (Zs)
Z= tan© Zg -Z_— ? - fan? 6:0 ) 'gs ’zO

2 w2
(b za) (1.(zel2e) p (kb __)( “F 1)
tan eo Zs tanzweo s tan eo zo vtanz eo
2a
0, =22
°"v .

The normalized axial echo areas of a slender parabolic ogive
with impedance ratios, zg/z,, of 0, and 0.5, are shown in Figs. 21

and 22. Now!? forx>>1,

Ci(x) 2 20lx)
(86)

and in the limit as kb ~«, for 1/tan8y> 24/2, > tan 0,

6/(0) w——p tan*8, 20\’ [zs\ L
(87) 20 kb vam i) (= {1-cos 4kb) +
A2 e Zg Zq 16 tan* 6,
Zo Zg 2

——— " —— —_— 1 .
I 4ta;"_9:'( +cos 4kb)

It is of interest to note that when the slope of the scatterer profile is
a function of z, the periodicity of the backscatter with kb is a function

of both kb and the surface impedance.
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E. SBhere

A sphere of radius a is shown in Fig. 23. From the figure,

N

(88)  a(z) - [2az-2? ]

From Eq. (46) the normalized echo area is given by,

2 2

v 2]l (238  zp) sin(2ka) Zs 2o ac! B’D’]z
8 A 28 _ Zo) sin(éka) _ Zs AC+

(89)  — = 4(ka) {[( : zs> P - FHACHED)4 3 ( )

2
+[(f_s. - _Z_O) 1_ +(_z.2-_z_8_) ‘.ﬁ’!g_kil -—?(BC-AD)
Zo 2zg/ 2ka \%Zg z, a Zy

7
+ 2 (Fc’- A’D’)]’} )

where
A = cos [Zka (1 4 ii\] s A = cos [Zka (1 + 2o ]
z, zg
B= sm[Zka(l + f.'..)] » B’= sin [Zka. (1 + f.?.)]
%o Zg




The echo areas as Munctions of ka for impedance ratios. z,/a,;

of 1.5 and 2 are shown in Figs. 24 and 25. The Mie series solutions

15

under impedance boundary conditions'” are included in the figurcs.

s

In the limit as ka =~0,

P 2
o y ~ zg - Zg
(9 ) -n-az Zs + Zo ’

Eq. (90) is merely the square of the infinite plane reflection coeffi-

cient for normal incidence.

Y
~

Fig. 20. Parabolic ogive.
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CHAPTER Iv
BISTATIC CROSS-SECTIONS.

A. Semi-Infinite Cones
From Eq. (52), the E-plane cross-section of the semi-infinite

cone shown in Fig. 2 is given by,

(91) i) = 4k’ tan®6,
E-plane

zg~-2qcos P tan Bp ® .
jAz
[zs+ 2q tan Og ‘S;le (Bz)e dz

00 .

_fr,o'cosﬂ - zgtan 6, S’ 1 (Bz) A% 45 4
zo+ 2zg tan O, B

(o]

jeinp zo ; 2
—_—— sz Jl(Bz)eJAZ dz
zg+zotan 0y o,

where
B = k sinf tanf,, A = k(cosp + 1).

Using the relations,!®

¢ {a% +b% -a}?
e~ 3ty (bt)at e
A A POFTCEE

»

v 1.
(92) SFe_atJV(b")tvdt =-S-ZP_)-_I'(:-,LI—
i (a? +b2 )Vt i s

) 1, _ 2a(@b)’riv+d)

+
5 e 2ty ()t dt

(o} (az +b2 )V’*'i"]_.n.— ,

60




Y,

i
1]

v

-

e

yields, . X ‘ ) : - -

. %o .
’ <} l-—cosp tanbp] [
(93) o'p) = 4m'tanto J|—5 - A B A% iy,
2 ) —
E.plane . 1 +?9_ tan eo ) (Bz -AZ ? leil B? -A?
s b

i 2s 4 —— )
|ooP mggtn Sl (JETAT 4im)

- 2 - -
.1+-5Ltaneo B",IBZ-AZ .

(o]

. Zo
(smﬁ > B 2

8

2 4 .

;1+-§2tan9° (B - A")®
Zg

.

Setting z; = 0,

(94) oMB) tant 85(cos f+1)°
= . 3
»* |E-plane " |sin®Btan’ 6 -(cos p+1)* |° *

From Eq. (51), the H-plane cross-section is given by,

Zg ’ .
1l.—cosf tan . ——
(95) ofp) = 4mé tan‘eo{ zz° -JA 3" -(_,IB -A® +jA
- -8 0 2 _a2 zI Z a2
H-plane 1+ %o tan 0, (B? -A?) [ -A

Zo
cos - —tan 6
p zg ° (.IBZ -A% +jA)

Zo BZ !BZ __AZ

1+';" taneo

+

8
. ‘:H 2
sinp —
j{ P B
e 5
o 2 & .
Ll+—z-:taneoJ(B ~A")

Zo
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The E- and H.-plane scattering cross-sections of a 10 degree semi-
infinite cone for impedance ratios, zg/zg, of 0, 0.5, and 1 are shown

in Figs. 26 and 27, respectively.

B. Double Coneg {Conducting)
I the coordinate systen, shown in Fig. 4 is translated,
{z = z-b) then,
tan 0,(z+bh) -b£z<£0,

(36} afz) -
-tan 6 {z.¢) 0Kz<c '

The results from Eqs. {52) and {54) will be identical, so from Eq. (52),

-b .
§ tan? eac(z+1>).=’kz‘-°°B B +1)J°[k sinp tan 6 (zh)]dz+

o

(97) o) =

Sianz 6, (z-c)elke(c08 B+])

(o]

Jolksinp tan0,(z-c)]dz i

2

a change of variable gives,

(98) cM:p ) = 4%K?

C

tan 90{ -JAb xe"AxJ [Dx]dx}

ta.n { ~jAc

where A = k{cosp+1), B = ~ksinp tan8,, D = ksinp tan 6, , and vk

)

x eJA% 3 [Dx}dx}

0

denotes the compiex conjugate of v, It is shown in Appendix A that

62




107! to-!
102 10-2
1073 1073
Zs
0
1074 1074
_//
t0-3 10-8
z z / g
2 o) 4 'y
> Tg. \// /_.115- 0.5 x
-6 L i -¢
10 — 717 10
‘\_\(l |
A
I\ |
1077 + F 107
T ,
i W ,/
[ /
10"8h— ¥ o
| !
i ]
' '
| i
| ]
109 ! 10" f —
0 30 60 90 120 150 0 30 60 90 120 180
Bistotic Angle Eistotic Angle
Fig. 26. Bistatic E-plane cross- Fig. 27. Bistatic H-plane cross-
section, for axial in- section, for axial in-
cidence, of a 10 degree cidence, of a 10 degree
semi-infinite cone for semi-infinite cons for
surface to free space surface to free space
impedance ratios of impedance rations of
0, .5, and 1.

0, 0.5, and 1.

63




a . 1 e a
(99) S‘uJo(u)eJkudu= ‘i‘:'I:'Z' ulJy (u)ed*? o

o
a .
o -jk SaJo(u)eJk“ duf,

(o]

+

jku J(u)edku

hence,

tan® 0,
(B? -A%)

b .
je-jAb SA Jo(%x) ejx dx}..

Q

2 , c Y*2
tan” 81 J pey, (De)+jAc (De)-je~JAC\ g D y)ei*ax
D¢ - A% ° o olA

(100) wﬂp) = 4mk’ {BbJ, (Bb)+ jALJ ,(Bb)-

The integral

Jolh u)ej“du

o"’ﬁm

is tabulated® as

S‘aJo(Xu)eJu du = J(N,a) + jJg(N,a).
[o]

Curves of J.(\,a) and Js(x sa) a8 a function of a with the parameter \
are shown in Appendix C. If the double cone is symmetric, then
b=c, D= -B, and 8, = 8,. From Eq. (100) the bistatic cross-section

of a symmetric double cone is obtained as,
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4nk?® tan* 0, i Ab B
(101) opB) = —[—Z——-—— 7 . j2AbJ o(Bb)-je 3P 3, A,Ab +jJg X,Ab -
B® - A '

: jAb». B vk B \' 2
Je 'JC!A,Ab‘I‘ JJS A » Ab} .

In the limit as kb =0,
4nk*tant 6, (cosp +1’b?

(102) o)iB) kb -0 ~ste T3
M [sin Btan’ 8o-(cos p+1) ]

1.8 sin’ B tan? 0o, 2

—
0
<}
w

o
-+
Yt

~t

S

for large kb,

’ 2

ma? [ si2ptan 6,-(cos p+1)3 {2(cos B +1)J (kb sinp tan 83}

The bistatic cross-section of a 20 degree haif angle symmetric double
cone (b = 1,83\, ¢ = .665\) as alculated from Eq. {(101) is shown
in Fig. 28. Figure 28 also gives the experimentally measured E-

and H-plane cross-sections of this cone. Pe. ..nabl, good agree-

ment is obtained between the measured E-plane crcss-section and

the theoretical cross-section.
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C. Semi-Infinite Cylinder with a Cone Cap

If 0; is set equal to zero in Eq. (100), the bistatic H-plane
2 cross-section of the semi-infinite cylinder capped with a cone shown

l in Fig. 15 is obtained as,

4rk? tantg .
~———=2 |'BbJ, (Bb)+jAbJ(Bb)-je JAP,

T (104) o) =
l H-plane [B® - A% ]

2

{Jc (B/A, Ab] + jJs[B/A,Ab]}

In the limit as kb 0,

(105) o-;w(ﬂ) m ra? (kb)® tan? 8 .

H-plane

For large kb,

4a? tan’ 6

[sin® B tan 8 -(cos p + 1§ ]z

/
(106) oiB) oo
H-plane

{[sin B tan@,J)(kbsinp tan8,) 1% + [(cos B+1)Jo(kb sin B tan6,) ]z}.

From Eq. (54), the bistatic E-plane cross-section is,
cos B tan @, + sinf B
B? - A A(B? - A%)

[ch[ B/A, Ab]-Jg[B/A, Ab]-jAbJ(Bb)eJAb-BbJ, (Bb)ejAb] +

(107) opy(B) = 4w k? tan® 8,
E-plane

sinfBb

e34b |*
A

J1 (Bb)
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In the limit as kb =0,

2 2
(108) oigp) g AWK tan'G(l + cosp)
[sinp (tan®8,-1)-2 cos B ]

For large kb,
TMiB)
E-plane i {Bb
(109) ZRARE > | s Ap 42RP Ji(Bb)
xa’ cos B +1

_ sinp tan®0,J, (Bb)+j{cos p +1)tan 8,70’ Bb) }
sin’p tanzeo - (cos B + 1)?

suinap J1SRBI1(BY) | tanGo(con B +1)Io(Bh)-jainp tart 8,7y (Bb)}“
sin
cosP +1 sin’p tanzeo - (cos g + 1) .
The E- and H-plane scattering cross-sections of a semi-infinite
cylinder capped with a 20 degree half angle cone (kb = 11,5) are
shown in Fig, 29,

D. Finite Cylinder with Cone Caps

A finite cylinder with cone caps is shown in Fig, 30. As was
the case with the double cones, only one bistatic cross-section is
predicted for this target by the long, thin body approximation,

From Fig. 30,

tan 6,(b+z) -b<£zL0
(110) a(z) = a 0<z<N
tan 6 (c-z) N<£z< ¢ | .

Using Eq. (52),
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Fig. 30. Finite cylinder with cone caps, |

o ' 7
(111) o) = anid | tan? %S’ (b+2)J [k tans, sinﬁ(b+z)]e']kz(c°sﬁ+l)dz
b

c . . .
-tanzeli\,(c-z).lo[ktanel sinﬁ(c-z)]esz(c"Bﬁ +1) dz .

A change of variable gives,

. b .
(112) 0';\4({3) = 4wk’ | tan? 9°e’-]AbSv x Jo(Bx) eI A% gy

(o]

Fomeed

. c-N . T
-tan® {e'JAC S X Jole)eJAx dx }
. o

where

A = kicos p +1)

ooped eemed

B = k sin § tan 0O,
D= k sinf tan §,
and the integrals were evaluated for double cones, If the cone caps

are identical, (0, = 0) there is obtained,

e e T e D e |
f
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4rk® tarto,

| : -ie-JAD
e Bb J1 (Bb)+jAb J (Bb)-je

(113) olB) =

J.[B/A,Ab]+jI4[B/A, Ab]

. . 2
+eJAN | _BbJ) (Bb)+jAbI(Bb)-jeAb {JC[B/A, Abl-jT,[B/A, Ab]H

It can be seen from Eq. (113) that for particular lengths, N, the bistatic
cross-section of a finite cylinder with cone caps reduces to that for the
double cone. Setting the bistatic angle to zero in Eq, (112), the axial
backscatter from a finite cylinder with cone caps is obtained.

114) o/ (0 =.t.‘_’lz._°.9_| J2kb 1)1
(114) oy,(0) pyees <" (j2kb-1)

2

2 .
s an’ 6 {_eJZkN [j2k(c-N)+1] + ejch}
tan® % ;

The bistatic cross-section of a finite cylinder with 20° cone caps
is shown in Fig, 31. In Appendix B, the axial echo areas of a double
cone, semi-infinite cylinder with cone cap, and finite cylinder with

cone caps are compared,
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CHAPTER V
DISCUSSION AND CONCLUSIONS

Four limitations or failings are genérally attributed to‘ the
physical optics method; they are: (1) Incorrect results 1;1 the
Rayleigh and low resonance regions and hence a limitation on target
size, (2) Reciprocity is not satisfied, {3) The polarization dependence

for backscatter is not dependent on scatter shape and incorrect in

many cases; and (4) The target shape in the shadow region is not

taken into account. Obviously, the limitation of incorrect polari-
zation dependence for backscatter does not apply here since axial
incidence and rotationally symmetric targets are specified. How-
ever, the other restrictions given above do apply to Egs. (43), (44),
and (46), the standard physical optics results. The inclusion of a
class of imperfectly conducting targets with an arbitrary surface
impedance does not alter these restrictions. In any case, a target

which satisfies the conditions for application of the impedance

boundary condition can never become a Rayleigh scatterer. It has

> been shown,z that the physical optics method does not, in general,
satisfy reciprocity, and this restriction clearly applies to the modi-
fication developed here. The restriction on target size, and the

- failure to consider the target shape in the shadow region are directly

related. The low frequency response predicted by physical optics is
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incorrect because the currents induced on the shadow portion of the
scatterer a're not considered. W};en the térget size 1n wavelengths
becomes sufficiently large,‘ these shadow currents are essentially
zero and the physical optics result is correct. The works of Foch,®
Keller,z5 and Kennaugh, 23:24 pave been concerned. directly or in-
directly, wiéh the problem of correctly predicting the low frequency
response. Clearly, the method of accounting for the shadow currents
used here lacks the sophistication and generality of the above techni-
ques, but for a restricted class of targets and a particular choice of
the source location, the simple expedient of extending the physical
optics currents over the entire scatterer has been shown to yield
surprisingly good results.

Two sets of equations predicting the scattexing for axial inci-
dence from rotationally symmetric targets have been developed.
The standard {or rate of change of area in the receiver direction over
the illuminated target area) physical optics approximation has been
extended to include a class of imperfectly conducting targets. It is
important to note that it is not necessary tl.a the imperfectly con-
ducting target be homogeneous; the equations ar. applicable to lavered
targets {e.g.,absorber coated) as long as the exterior surface satic-~
fies the Leontovich® conditions. Figures 26 and 27 which compare

the exact and approximation solutions for bac. -scatter from spheres
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indicates the validity of the approximation. Emphasis in this report, .
however, has been on the second set of derived equations which are
applicable to long, thin, Adachi® type targets. In this case,
Adachi's solution, or rathe. the first order approximation to it, has
been extended to imperfectly conducting targets and to the bistatic
configuration. Unfortunately, the long, thin target modification of
the physical optics approximation removes the polarization depend-
ence of the solution for finite scatterers and only one cross section
is predicted. Experimental evidence has thus far supported the
postulate that the predicted cross-section is valid for the E-plane,
but additional verification is necessary before this conclusion may
be stated in general. In Fig. 12, excellent agreement between the
theoretical and measured axial backscatter rom symmetric and
non-symmetri¢c conduc*ing double cones is obtained. The validity of
the bistatic solution is demonstrated in Fig., 30, where the measured
an : theoretical E-plane cross-sections of a symmetric double cone
are compared. Thus, an exceedingly simple expression has been
derived which is not subject, at least as stringently, to two of the
most serious limitations of physical optics. The bistatic solution,
h.oweve r, does not have a polarization dependence for finite targets,
and the results are incorrect, in general, for bistatic angles greater

than the specular reflection angle.
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The approximate Fresnel refiection coefficients derived in

Chapter II, and ~pplied to the physical optics scattering approxima-

tion, when compared to the accurate Fresnel expressionss exhibit
an error of the order of (cos2 &) A1 L€ ¥ (0 is defired in Fig. 1, p ., {

¢, are, respectively, the relative permeability and permittivity of

the target medium), Obviously, the approximate reflection coeffi-
cients are least valid for long, thin targets with apices, but since a
large pe product was assumed, the condition, (cos? 8)/{p e )<< 1,
should hold even for these targets.

The general expressions for axial backscatter in Eqs. (55) and
(56) offer a means for determining the terminating shape necessary

to minimize the axial return. That is, given a fixed target shape in

the illuminated region, the terminating shape in the shadow region
which will minimize the axial return can be determined. This work !
is beyond the scope of this report, but both a rigorous analysis by
the calculus of variations, and a simple assumed polynomial solution
appear to be feasible, Ketler'” has made some recommendations
concerning this probiem which the results in Eq. {56) appear to 3
support.
In summary, the following conclusions may be stated. A
physical optics approximation to the scattering, for axial incidence, ]

from rotationally symmetric targets with an arbitrary surface
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impedance has been derived. These expressions are subject to the
usual physical optics limitations.

A modified physical cptics approximation to the scattering,
for axial incidence, from rotationally symmetric targets with an
arbitrary surface impedance applicable to long, thin targets with
apices has been derived, These results give only the monostatic
and E-plane bistatic cross-sections, and are of limited usefulness
since axial incidence is assumed, but the predicted scattering for
conducting targets agrees remarkably well with measured data. In
the case of imperfectly conducting long, thin targets, no experimental
verification of the derived equations has been obtained and the results
are still in question, The modified physical optics approximation
assumes that the diffracted field in the shadow region has a wave-
number very near that of the incident field, and for lossy targets this
may not be true evenfor very thin scatterers.

For targets of the long, thin class with apices, the axial back-
scatter is single-valued, that is, the axial backscatter from either
end of a non-symmetric double cone, for example, is the same,

For targets of the long, thin class with apices, the periodicity
of the frequency response is dictated by tiie electrical length from the
nose to any discontinuities in the slope of the target, the overall

electrical length, and if the slope of the target is not constant, by the
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surface impedance of the scatterer. Thus, for example, the period
of a conducting double cone will be approximately twice that of a
conducting double cone of the same dimensions for which the wedge
where the cone bases join has been smoothed.

For bistatic angles greater than the specular reflection angle,
the long, thin target equations led to questionable cross-sections,
and the standard physical optics results should be used. A more
reasonable expression for the forward scatter cross-section is
available from the variational result in Eq. (70).

The surprising success, for a particular class of conducting
targets, of an exceedingly simple modification of physical optics in
accounting for the shape of the target in the shadow region indicates
that perhaps the physical optics method has not yet been fully utilized
in the approximate solution of scattering problems. It may be merely
fortuitous that this modification works so well, but some effort should
be expended in an attempt to extend the results to a more general
class of targets, and ultimately to removing the sourqg\‘fxl':;;i'gthe sym-

metry axis.
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APPENDIX A. EVALUATION OF I =S uJfu)elX du

e,

From Eq. {57), the integral may be written as

o) .
(A-1) T= 5 4 [udy (u)]e‘]ku du.
al du

An integration by parts gives,

a; a2 .

-jk S ul, (u)eJku du,
a

(A-2) = uJ, (u)edku

a

1 1

The integral may also be written as,

Q2
(A-3) 1=S‘ Tu)dd | ku} 1 jku
. olu) 3 | 5% e W e du,

1

and an integration by parts gives

1 2 T ) a,
(a-a) 1= L (g el gy gilu g ) |7

Jk a, ik a,

O )
LS ul, (u)eJku du .
e Jg,
2 ?,1

Multiplying Eq. (A-4) by (jk)° and adding to Eq. (A-2), thiad
*The author is indebted to Dr. E. M. Kennaugh for this derivation, E

84




Qa; . Q2
+jku Jd(u)e‘]ku -

(A-5) 1=l _ {u 71 (u)edku
Q) ay

1+ (jk)?

e 73
-jk § T (w)edky gy
Qy °
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APPENDIX B - AXIAL BACKSCATTER OF CONE COMBINATIONS

The axial backscatter from a symmetric double cone, semi-
infinite cylinder with a cone cap, and a finite cylinder with symmetric
cone caps as predicted by the modified physical optics approximation
ie shown in Fig, A, The targets are assumed to be perfectly

conducting,
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Fig. A. Normalized axial backscatter from a conducting
symmetric double cone, semi~infinite cylinder
with cone cap, and finite cylinder with symmetric

cone caps.
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APPENDIX C. CONCERNING SuJo(Xx)ejxdx=Jc(X,u)+j Jg(\,u)
(o]
As previously mentioned, tabulated values of Jo(M,u) and
Jg(\,u) are available,® for
0shugl.5
o<\ <10
0<u <1.5/\,
The increments in A and u in the tables make interpolation
necessary, and for that purpose, the curves of J (A, u) and J (M, u)
shown respectively in Figs. A-1 and A-EI were prepared,

When Au 2 1.5, the integral may be written as,

u . '
(C-1) SJO(Xu)edex= S Jo(xx)ej" dx +
° °
ui 2 w jx
Sx,‘“)‘x cos[kx-z] e’ dx,

where Au'= 1.5, and the asymptotic form”" Jollx) =

TAX cos

[Ax - /4] has been used for Ax > 1.5, Since,

Zz .
; e-it _ .
(C-2) So = dt= C(z) - jS(x),

where C(z) and S(z) are Fresnel's integrals,

a8

-

voponney

-,




J. (Real Part)
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Fig. A-1. J (\,u), real past | Jolhx)ed™ ix, -
o

as a tunction of v with the parameter .
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Fig. A-2. Jg4(\,u), imaginary part ot'S To(hx)ed* dx,
: o
as a function of u with the parameter \.
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u .
(C-3) S ToMx)ed¥dx = TN ,u) +j Jg(h ) +
o]

= [c[(x+1)u]-C[(>s+1)u']+J‘S»[(’“'”‘*]‘J'Sw“””“q]Jr

[cm-nul-cm-nu']-jsux-1>u1+jsux-1>u'] .

C(z) and S{(z) are tabulated in Reference 17,
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